Gating currents associated with intramembrane charge displacement in HERG potassium channels.
نویسندگان
چکیده
HERG (human ether-a-go-go-related gene) encodes a delayed rectifier K+ channel vital to normal repolarization of cardiac action potentials. Attenuation of repolarizing K+ current caused by mutations in HERG or channel block by common medications prolongs ventricular action potentials and increases the risk of arrhythmia and sudden death. The critical role of HERG in maintenance of normal cardiac electrical activity derives from its unusual gating properties. Opposite to other voltage-gated K+ channels, the rate of HERG channel inactivation is faster than activation and appears to be intrinsically voltage dependent. To investigate voltage sensor movement associated with slow activation and fast inactivation, we characterized HERG gating currents. When the cut-open oocyte voltage clamp technique was used, membrane depolarization elicited gating current with fast and slow components that differed 100-fold in their kinetics. Unlike previously studied voltage-gated K+ channels, the bulk of charge movement in HERG was protracted, consistent with the slow rate of ionic current activation. Despite similar kinetic features, fast inactivation was not derived from the fast gating component. Analysis of an inactivation-deficient mutant HERG channel and a Markov kinetic model suggest that HERG inactivation is coupled to activation.
منابع مشابه
Gating charge movement precedes ionic current activation in hERG channels
We recently reported gating currents recorded from hERG channels expressed in mammalian TSA cells and assessed the kinetics at different voltages. We detected 2 distinct components of charge movement with the bulk of the charge being carried by a slower component. Here we compare our findings in TSA cells with recordings made from oocytes using the Cut Open Vaseline Gap clamp (COVG) and go on t...
متن کاملVoltage-Dependent Gating of hERG Potassium Channels
The mechanisms by which voltage-gated channels sense changes in membrane voltage and energetically couple this with opening of the ion conducting pore has been the source of significant interest. In voltage-gated potassium (Kv) channels, much of our knowledge in this area comes from Shaker-type channels, for which voltage-dependent gating is quite rapid. In these channels, activation and deacti...
متن کاملThe electric heart of hERG
409 C o m m e n t a r y Potassium channels encoded by the human ether-á-go-go–related gene (hERG) are of crucial importance for the repolarization of the cardiac action potential, as they constitute the main component of the cardiac delayed rec-tifier current, I Kr (Sanguinetti et al., 1995). The primary sequence of these channels has high similarity to other voltage-gated potassium (Kv) channe...
متن کاملMiRP1 Forms IKr Potassium Channels with HERG and Is Associated with Cardiac Arrhythmia
A novel potassium channel gene has been cloned, characterized, and associated with cardiac arrhythmia. The gene encodes MinK-related peptide 1 (MiRP1), a small integral membrane subunit that assembles with HERG, a pore-forming protein, to alter its function. Unlike channels formed only with HERG, mixed complexes resemble native cardiac IKr channels in their gating, unitary conductance, regulati...
متن کاملMechanism of hERG Channel Block by the Psychoactive Indole Alkaloid Ibogaine s
Ibogaine is a psychoactive indole alkaloid. Its use as an antiaddictive agent has been accompanied by QT prolongation and cardiac arrhythmias, which are most likely caused by human ether a go-go–related gene (hERG) potassium channel inhibition. Therefore, we studied in detail the interaction of ibogaine with hERG channels heterologously expressed in mammalian kidney tsA-201 cells. Currents thro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 100 18 شماره
صفحات -
تاریخ انتشار 2003